

Introduction

[image: Documentation Status]
 [https://circuitpython-displayio-switchround.readthedocs.io/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/circuitpython/CircuitPython_Org_DisplayIO_SwitchRound/actions][image: Code Style: Black]
 [https://github.com/psf/black]A sliding switch widget with a round shape.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://circuitpython.org/libraries]
or individual libraries can be installed using
circup [https://github.com/adafruit/circup].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally
from PyPI [https://pypi.org/project/circuitpython-displayio-switchround/].
To install for current user:

pip3 install circuitpython-displayio-switchround

To install system-wide (this may be required in some cases):

sudo pip3 install circuitpython-displayio-switchround

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install circuitpython-displayio-switchround

Usage Example

See scripts in the examples directory of this repository.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/circuitpython/CircuitPython_Org_DisplayIO_SwitchRound/blob/main/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out
this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

	Switch test with multiple switches

Overview

	Overview of SwitchRound
	Quickstart: Importing and using SwitchRound

	Summary: SwitchRound Features and input variables

	Description of features

	Internal details: How the SwitchRound widget works

	Group structure: Display elements that make up SwitchRound

	Coordinate systems and use of anchor_point and anchored_position

	The Widget construction sequence

	Making it move

	Orientation and a peculiarity of width and height definitions for SwitchRound

	Setting the touch response boundary

	Summary

	A Final Word

API Reference

	displayio_switchround
	Implementation Notes

	Inheritance

Tutorials

	DisplayIO Basics [https://learn.adafruit.com/circuitpython-display-support-using-displayio]

Other Links

	Download [https://github.com/circuitpython/CircuitPython_Org_DisplayIO_SwitchRound/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Create a single sliding switch.

examples/displayio_switchround_simpletest.py

 1# SPDX-FileCopyrightText: 2021 Kevin Matocha
 2#
 3# SPDX-License-Identifier: MIT
 4"""
 5Creates a single sliding switch widget.
 6"""
 7
 8import time
 9import board
10import displayio
11import adafruit_touchscreen
12from adafruit_displayio_layout.widgets.switch_round import SwitchRound as Switch
13
14display = board.DISPLAY
15
16ts = adafruit_touchscreen.Touchscreen(
17 board.TOUCH_XL,
18 board.TOUCH_XR,
19 board.TOUCH_YD,
20 board.TOUCH_YU,
21 calibration=((5200, 59000), (5800, 57000)),
22 size=(display.width, display.height),
23)
24
25# Create the switch
26my_switch = Switch(20, 30)
27
28
29my_group = displayio.Group()
30my_group.append(my_switch)
31
32# Add my_group to the display
33display.show(my_group)
34
35# Start the main loop
36while True:
37
38 p = ts.touch_point # get any touches on the screen
39
40 if p: # Check each switch if the touch point is within the switch touch area
41 # If touched, then flip the switch with .selected
42 if my_switch.contains(p):
43 my_switch.selected(p)
44
45 time.sleep(0.05) # touch response on PyPortal is more accurate with a small delay

Switch test with multiple switches

Create multiple sliding switch with various sizes and orientations.

examples/displayio_switchround_multiple.py

 1# SPDX-FileCopyrightText: 2021 Kevin Matocha
 2#
 3# SPDX-License-Identifier: MIT
 4"""
 5Creates multiple sliding switch widgets of various size and orientations.
 6"""
 7
 8import time
 9import board
 10import displayio
 11import adafruit_touchscreen
 12from adafruit_displayio_layout.widgets.switch_round import SwitchRound as Switch
 13
 14display = board.DISPLAY
 15
 16# setup the touch screen
 17ts = adafruit_touchscreen.Touchscreen(
 18 board.TOUCH_XL,
 19 board.TOUCH_XR,
 20 board.TOUCH_YD,
 21 board.TOUCH_YU,
 22 calibration=((5200, 59000), (5800, 57000)),
 23 size=(display.width, display.height),
 24)
 25
 26
 27# Create the switches
 28
 29my_switch = Switch(20, 30)
 30
 31my_switch2 = Switch(
 32 x=120,
 33 y=35,
 34 height=30, # Set height to 30 pixels. If you do not specify width,
 35 # it is automatically set to a default aspect ratio
 36 touch_padding=10, # add extra boundary for touch response
 37 value=True,
 38) # initial value is set to True
 39
 40my_switch3 = Switch(
 41 x=20,
 42 y=85,
 43 height=40,
 44 fill_color_off=(255, 0, 0), # Set off colorred, can use hex code (0xFF0000)
 45 outline_color_off=(80, 0, 0),
 46 background_color_off=(150, 0, 0),
 47 background_outline_color_off=(30, 0, 0),
 48)
 49
 50my_switch4 = Switch(
 51 x=120,
 52 y=85,
 53 height=40,
 54 width=110, # you can set the width manually but it may look weird
 55)
 56
 57my_switch5 = Switch(
 58 x=20,
 59 y=140,
 60 height=40,
 61 display_button_text=False, # do not show the 0/1 on the switch
 62)
 63
 64my_switch6 = Switch(
 65 x=120,
 66 y=140,
 67 height=40,
 68 horizontal=False, # set orientation to vertical
 69)
 70
 71my_switch7 = Switch(
 72 x=180,
 73 y=140,
 74 height=40,
 75 horizontal=False, # set orientation to vertical
 76 flip=True, # swap the direction
 77)
 78
 79my_switch8 = Switch(
 80 x=0,
 81 y=0, # this is a larger, vertical orientation switch
 82 height=60,
 83 horizontal=False, # set orientation to vertical
 84 flip=True, # swap the direction
 85)
 86# use anchor_point and anchored_position to set the my_switch8 position
 87# relative to the display size.
 88my_switch8.anchor_point = (1.0, 1.0)
 89# the switch anchor_point is the bottom right switch corner
 90my_switch8.anchored_position = (display.width - 10, display.height - 10)
 91# the switch anchored_position is 10 pixels from the display
 92# lower right corner
 93
 94my_group = displayio.Group()
 95my_group.append(my_switch)
 96my_group.append(my_switch2)
 97my_group.append(my_switch3)
 98my_group.append(my_switch4)
 99my_group.append(my_switch5)
100my_group.append(my_switch6)
101my_group.append(my_switch7)
102my_group.append(my_switch8)
103
104# Add my_group to the display
105display.show(my_group)
106
107
108# Start the main loop
109while True:
110
111 p = ts.touch_point # get any touches on the screen
112
113 if p: # Check each switch if the touch point is within the switch touch area
114 # If touched, then flip the switch with .selected
115 if my_switch.contains(p):
116 my_switch.selected(p)
117
118 elif my_switch2.contains(p):
119 my_switch2.selected(p)
120
121 elif my_switch3.contains(p):
122 my_switch3.selected(p)
123
124 elif my_switch4.contains(p):
125 my_switch4.selected(p)
126
127 elif my_switch5.contains(p):
128 my_switch5.selected(p)
129
130 elif my_switch6.contains(p):
131 my_switch6.selected(p)
132
133 elif my_switch7.contains(p):
134 my_switch7.selected(p)
135
136 elif my_switch8.contains(p):
137 my_switch8.selected(p)
138
139 time.sleep(0.05) # touch response on PyPortal is more accurate with a small delay

Overview of SwitchRound

Quickstart: Importing and using SwitchRound

Here is one way of importing the SwitchRound class so you can use it as
the name Switch:

from displayio_switchround import SwitchRound as Switch

Now you can create a switch at pixel position x=20, y=30 using:

my_switch = Switch(20, 30) # create the switch at x=20, y=30

Once you setup your display, you can now add my_switch to your display using:

display.show(my_switch) # add the group to the display

If you want to have multiple display elements, you can create a group and then
append the switch and the other elements to the group. Then, you can add the full
group to the display as in this example:

my_switch = Switch(20, 30) # create the switch at x=20, y=30
my_group = displayio.Group() # make a group
my_group.append(my_switch) # Add my_switch to the group

#
Append other display elements to the group
#

display.show(my_group) # add the group to the display

For a full example, including how to respond to screen touches, check out the
following examples in the Adafruit_CircuitPython_DisplayIO_Layout [https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Layout] library:

	examples/displayio_layout_switch_simpletest.py [https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Layout/blob/main/examples/displayio_layout_switch_simpletest.py]

	examples/displayio_layout_switch_multiple.py [https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Layout/blob/main/examples/displayio_layout_switch_multiple.py]

Summary: SwitchRound Features and input variables

The SwitchRound widget has numerous options for controlling its position, visible appearance,
orientation, animation speed and value through a collection of input variables:

	
	position:
	x and
y or
anchor_point and
anchored_position

	
	size:
	width and
height

It is recommended to leave width = None to use the preferred aspect
ratio.

	
	orientation and movement direction (on vs. off):
	horizontal and
flip

	
	switch color:
	fill_color_off,
fill_color_on,
outline_color_off and
outline_color_on

	
	background color:
	background_color_off,
background_color_on,
background_outline_color_off and
background_outline_color_on

	
	linewidths:
	switch_stroke and
text_stroke

	
	0/1 display:
	display_button_text

Set to True [https://docs.python.org/3.4/library/constants.html#True] if you want the 0/1 shapes
to show on the switch

	
	animation:
	animation_time

Set the duration (in seconds) it will take to transition the switch, use
0 if you want it to snap into position immediately. The default value
of 0.2 seconds is a good starting point, and larger values for bigger
switches.

	
	value:
	value

Set to the initial value (True [https://docs.python.org/3.4/library/constants.html#True] or False [https://docs.python.org/3.4/library/constants.html#False])

	
	touch boundaries:
	touch_padding

This defines the number of additional pixels surrounding the switch that should
respond to a touch. (Note: The touch_padding variable updates the
touch_boundary Control class variable. The definition of the
touch_boundary is used to determine the region on the Widget that returns
True [https://docs.python.org/3.4/library/constants.html#True] in the contains() method.)

Description of features

The SwitchRound widget is a sliding switch that changes state whenever it is touched.
The color gradually changes from the off-state color scheme to the on-state color
scheme as the switch transfers from off to the on position. The switch has an optional
display of “0” and “1” on the sliding switch. The switch can be oriented using the
horizontal input variable, and the sliding
direction can be changed using the flip
input variable.

Regarding switch sizing, it is recommended to set the height dimension but to leave the
width = None. Setting width = None will allow the width to resize to
maintain a recommended aspect ratio of width/height. Alternately, the switch can be
resized using the resize() method, and it will
adjust the width and height to the maximum size that will fit inside the requested
width and height dimensions, while keeping the preferred aspect ratio. To make the
switch easier to be selected, additional padding around the switch can be defined using
the touch_padding input variable to increase
the touch-responsive area. The duration of animation between on/off can be set using
the animation_time input variable.

Internal details: How the SwitchRound widget works

The SwitchRound widget is a graphical element that responds to touch elements to
provide sliding switch on/off behavior. Whenever touched, the switch toggles to its
alternate value. The following sections describe the construction of the SwitchRound
widget, in the hopes that it will serve as a first example of the key properties and
responses for widgets.

[image: Inheritance diagram of displayio_switchround]

The SwitchRound widget inherits from two classes, it is a subclass of
Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget], which itself is a subclass
of displayio.Group [https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/index.html#displayio.Group], and a subclass of
Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control]. The
Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget] class helps define the
positioning and sizing of the switch, while th
Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] class helps define the
touch-response behavior.

The following sections describe the structure and inner workings of SwitchRound.

Group structure: Display elements that make up SwitchRound

The Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget]
class is a subclass of displayio.Group [https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/index.html#displayio.Group], thus we can append graphical
elements to the Widget for displaying on the screen. The switch consists of the
following graphical elements:

	switch_roundrect: The switch background

	switch_circle: The switch button that slides back and forth

	text_0 [Optional]: The “0” circle shape on the switch button

	text_1 [Optional]: The “1” rectangle shape on the switch button

The optional text items can be displayed or hidden using the
display_button_text input variable.

Coordinate systems and use of anchor_point and anchored_position

See the Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget] class definition for
clarification on the methods for positioning the switch, including the difference in
the display coordinate system and the Widget’s local coordinate system.

The Widget construction sequence

Here is the set of steps used to define this sliding switch widget.

	Initialize the stationary display items

	Initialize the moving display elements

	Store initial position of the moving display elements

	Define “keyframes” to determine the translation vector

	Define the SwitchRound._draw_position() method between 0.0 to 1.0 (and
slightly beyond)

	Select the motion “easing” function

	Extra. Go check out the SwitchRound._animate_switch() method

First, the stationary background rounded rectangle (RoundRect is created). Second, the
moving display elements are created, the circle for the switch, the circle for the text
“0” and the rectangle for the text “1”. Note that either the “0” or “1” is set as
hidden, depending upon the switch value. Third, we store away the initial position of
the three moving elements, these initial values will be used in the functions that move
these display elements. Next, we define the motion of the moving element, by setting
the self._x_motion and self._y_motion values that depending upon the
horizontal and flip variables. These motion
variables set the two “keyframes” for the moving elements, basically the endpoints of
the switch motion. (Note: other widgets may need an _angle_motion variable if
they require some form of rotation.) Next, we define the
SwitchRound._draw_function() method. This method takes an input between 0.0 and
1.0 and adjusts the position relative to the motion variables, where 0.0 is the initial
position and 1.0 represents the final position (as defined by the _x_motion and
_y_motion values). In the case of the sliding switch, we also use this
SwitchRound.position value (0.0 to 1.0) to gradually grade the color of the
components between their “on” and “off” colors.

Making it move

Everything above has set the ground rules for motion, but doesn’t cause it to move.
However, you have set almost all the pieces in place to respond to requests to change
the position. All that is left is the Extra method that performs the animation,
called SwitchRound._animate_switch(). The SwitchRound._animate_switch()
method is triggered by a touch event through the
selected() [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control.selected] Control class
method. Once triggered, this method
checks how much time has elapsed. Based on the elapsed time and the
SwitchRound.animation_time input variable, the
SwitchRound._animate_switch() method calculates the SwitchRound.position
where the switch should be. Then, it takes this SwitchRound.position to call
the SwitchRound._draw_position() method that will update the display elements
based on the requested position.

But there’s even one more trick to the animation. The
SwitchRound._animate_switch() calculates the target position based on a linear
relationship between the time and the position. However, to give the animation a better
“feel”, it is desirable to tweak the motion function depending upon how this widget
should behave or what suits your fancy. To do this we can use an “easing” function.
In short, this adjusts the constant speed (linear) movement to a variable speed during
the movement. Said another way, it changes the position versus time function according
to a specific waveform equation. There are a lot of different “easing” functions that
folks have used or you can make up your own. Some common easing functions are provided
in the adafruit_displayio_layout.widgets.easing module. You can change the
easing function based on changing which function is imported at the top of this file.
You can see where the position is tweaked by the easing function in the line in the
SwitchRound._animate_switch() method:

self._draw_position(easing(position)) # update the switch position

Go play around with the different easing functions and observe how the motion
behavior changes. You can use these functions in multiple dimensions to get all
varieties of behavior that you can take advantage of. The website
easings.net [https://easings.net] can help you
visualize some of the behavior of the easing functions.

Note

Some of the “springy” easing functions require position values
slightly below 0.0 and slightly above 1.0, so if you want to use these, be sure
to check that your _draw_position() method behaves itself for that range
of position inputs.

Orientation and a peculiarity of width and height definitions for SwitchRound

In setting the switch sizing, use height and width to set the narrow and wide dimension
of the switch. To try and reduce confusion, the orientation is modified after the
height and width are selected. That is, if the switch is set to vertical, the height
and still mean the “narrow” and the width will still mean the dimensions
in the direction of the sliding.

If you need the switch to fit within a specific bounding box, it’s preferred to use
the resize() function. This will put the switch (in whatever
orientation) at the maximum size where it can fit within the bounding box that you
specified. The Switch aspect ratio will remain at the “preferred” aspect ratio of 2:1
(width:height) after the resizing.

Setting the touch response boundary

The touch response area is defined by the Control class variable called
touch_boundary. In the case of the SwitchRound widget, we provide an
SwitchRound.touch_padding input variable. The use of
SwitchRound.touch_padding defines an additional number of pixels surrounding
the display elements that respond to touch events. To achieve this additional space,
the touch_boundary increases in size in all dimensions by the number of pixels
specified in the SwitchRound.touch_padding parameter.

The touch_boundary is used in the Control function
contains() that checks whether any
touch_points are within the boundary. Please pay particular attention to the
SwitchRound contains() method, since it
calls the contains() [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control.contains]
superclass method with the touch_point value adjusted for the switch’s
x and
y values. This offset adjustment is
required since the contains() [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control.contains]
function operates only on the widget’s local coordinate system. It’s good to keep in
mind which coordinate system you are working in, to ensure your code responds to the
right inputs!

Summary

The SwitchRound widget is an example to explain the use of the
Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget] and
Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] class methods. The
Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget] class handles the overall
sizing and positioning function and is the group that holds all the graphical elements.
The Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] class is used to define
the response of the widget to touch events (or could be generalized to other inputs).
Anything that only displays (such as a graph or an indicator light) won’t need to
inherit the Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] class. But
anything that responds to touch inputs should inherit the
Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] class to define the
touch_boundary and the touch response functions.

I hope this SwitchRound widget will help turn on some new ideas and highlight some
of the new capabilities of the Widget [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.widget.Widget]
and Control [https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/api.html#adafruit_displayio_layout.widgets.control.Control] classes. Now go see
what else you can create and extend from here!

A Final Word

The design of the Widget and Control classes are open for inputs. If you think any
additions or changes are useful, add it and please submit a pull request so others can
use it too! Also, keep in mind you don’t even need to follow these classes to get the
job done. The Widget and Class definitions are designed to give guidance about one way
to make things work, and to try to share some code. If it’s standing in your way, do
something else! If you want to use the grid_layout or other layout tools in this
library, you only really need to have methods for positioning and resizing.

Note

Never let any of these class definitions hold you back, let your imagination
run wild and make some cool widgets!

displayio_switchround

A sliding switch widget with a round shape.

	Author(s): Kevin Matocha

Implementation Notes

Hardware:

Software and Dependencies:

	Adafruit CircuitPython firmware for the supported boards:
https://github.com/adafruit/circuitpython/releases

Inheritance

[image: Inheritance diagram of displayio_switchround]

	
class displayio_switchround.SwitchRound(x=0, y=0, width=None, height=40, touch_padding=0, horizontal=True, flip=False, anchor_point=None, anchored_position=None, fill_color_off=(66, 44, 66), fill_color_on=(0, 100, 0), outline_color_off=(30, 30, 30), outline_color_on=(0, 60, 0), background_color_off=(255, 255, 255), background_color_on=(0, 60, 0), background_outline_color_off=None, background_outline_color_on=None, switch_stroke=2, text_stroke=None, display_button_text=True, animation_time=0.2, value=False, **kwargs)

	Create a SwitchRound. See Overview for more details.

	Parameters

	
	x (int [https://docs.python.org/3.4/library/functions.html#int]) – pixel position, defaults to 0

	y (int [https://docs.python.org/3.4/library/functions.html#int]) – pixel position, defaults to 0

	width (None [https://docs.python.org/3.4/library/constants.html#None],int [https://docs.python.org/3.4/library/functions.html#int]) – width of the switch in pixels, if set to
None [https://docs.python.org/3.4/library/constants.html#None] (recommended) the width will auto-size relative to the height, defaults
to None [https://docs.python.org/3.4/library/constants.html#None]

	height (int [https://docs.python.org/3.4/library/functions.html#int]) – height of the switch in pixels, defaults to 40 pixels

	touch_padding (int [https://docs.python.org/3.4/library/functions.html#int]) – the width of an additional border surrounding the switch
that extends the touch response boundary, defaults to 0

	horizontal (bool [https://docs.python.org/3.4/library/functions.html#bool]) – To set vertical orientation, set horizontal
to False [https://docs.python.org/3.4/library/constants.html#False], defaults to True [https://docs.python.org/3.4/library/constants.html#True]

	flip (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True [https://docs.python.org/3.4/library/constants.html#True] the on and off direction will be flipped, default is
True [https://docs.python.org/3.4/library/constants.html#True]

	anchor_point (None [https://docs.python.org/3.4/library/constants.html#None],tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](float [https://docs.python.org/3.4/library/functions.html#float],float [https://docs.python.org/3.4/library/functions.html#float])) – (X,Y) values from 0.0 to 1.0 to define
the anchor point relative to the switch bounding box, default is None [https://docs.python.org/3.4/library/constants.html#None]

	anchored_position (None [https://docs.python.org/3.4/library/constants.html#None],tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int])) – (x,y) pixel value for the location
of the anchor_point, default is None [https://docs.python.org/3.4/library/constants.html#None]

	fill_color_off (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – switch off-state fill color, as an
RGB-tuple or 24-bit hex, default is (66, 44, 66) gray.

	fill_color_on (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – switch on-state fill color, as an
RGB-tuple or 24-bit hex, default is (0, 100, 0) green.

	outline_color_off (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – switch off-state outline color, as
an RGB-tuple or 24-bit hex, default is (30, 30, 30) dark gray.

	outline_color_on (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – switch on-state outline color, as
an RGB-tuple or 24-bit hex, default is (0, 60, 0) green

	background_color_off (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – background off-state color, as
an RGB-tuple or 24-bit hex, default is (255, 255, 255) white

	background_color_on (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – background on-state color, as an
RGB-tuple or 24-bit hex, default is (0, 60, 0) dark green

	background_outline_color_off (None [https://docs.python.org/3.4/library/constants.html#None],tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – background outline
color in off-state, as an RGB-tuple or 24-bit hex or `None`. If set to None [https://docs.python.org/3.4/library/constants.html#None]
this will default to background_color_off, default is None [https://docs.python.org/3.4/library/constants.html#None]

	background_outline_color_on (None [https://docs.python.org/3.4/library/constants.html#None],tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int]),int [https://docs.python.org/3.4/library/functions.html#int]) – background outline
color in on-state, as an RGB-tuple or 24-bit hex or `None`. If set to None [https://docs.python.org/3.4/library/constants.html#None] this
will default to background_color_on, default is None [https://docs.python.org/3.4/library/constants.html#None]

	switch_stroke (int [https://docs.python.org/3.4/library/functions.html#int]) – outline stroke width for the switch and background,
in pixels, default is 2

	text_stroke (None [https://docs.python.org/3.4/library/constants.html#None],int [https://docs.python.org/3.4/library/functions.html#int]) – outline stroke width (in pixels) for the 0/1 text shape
outlines, if set to None [https://docs.python.org/3.4/library/constants.html#None] it will use the value for switch_stroke, default
value is None [https://docs.python.org/3.4/library/constants.html#None]

	display_button_text (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True [https://docs.python.org/3.4/library/constants.html#True] display the 0/1 text shapes
on the sliding switch. If False [https://docs.python.org/3.4/library/constants.html#False] hide the 0/1 text shapes, default value is
True [https://docs.python.org/3.4/library/constants.html#True]

	animation_time (float [https://docs.python.org/3.4/library/functions.html#float]) – time for the switching animation, in seconds, default
value is 0.2 seconds.

	value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – the initial value for the switch, default is False [https://docs.python.org/3.4/library/constants.html#False]

	
selected(touch_point)

	Response function when Switch is selected. When selected, the switch
position and value is changed with an animation.

	Parameters

	touch_point (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int])) – x,y location of the screen, in absolute
display coordinates.

	Returns

	None

	
contains(touch_point)

	Checks if the Widget was touched. Returns True if the touch_point
is within the Control’s touch_boundary.

	Parameters

	touch_point (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple](int [https://docs.python.org/3.4/library/functions.html#int],int [https://docs.python.org/3.4/library/functions.html#int])) – x,y location of the screen, in absolute
display coordinates.

	Returns

	bool

	
property value

	The current Switch value (Boolean).

	Returns

	bool

	
property width

	The width of the Switch (int).

	Returns

	int

	
property anchor_point

	The anchor point for positioning the widget, works in concert
with anchored_position The relative (X,Y) position of the widget where the
anchored_position is placed. For example (0.0, 0.0) is the Widget’s upper left corner,
(0.5, 0.5) is the Widget’s center point, and (1.0, 1.0) is the Widget’s lower right corner.

	Parameters

	anchor_point (Tuple[float [https://docs.python.org/3.4/library/functions.html#float], float [https://docs.python.org/3.4/library/functions.html#float]]) – In relative units of the Widget size.

	
property anchored_position

	The anchored position (in pixels) for positioning the widget, works in concert
with anchor_point. The anchored_position is the x,y pixel position
for the placement of the Widget’s anchor_point.

	Parameters

	anchored_position (Tuple[int [https://docs.python.org/3.4/library/functions.html#int], int [https://docs.python.org/3.4/library/functions.html#int]]) – The (x,y) pixel position for the anchored_position (in pixels).

	
append(layer)

	Append a layer to the group. It will be drawn
above other layers.

	
property bounding_box

	The boundary of the widget. [x, y, width, height] in Widget’s local
coordinates (in pixels). (getter only)

	Returns

	Tuple[int, int, int, int]

	
property height

	The height of the Switch (int).

	Returns

	int

	
property hidden

	True when the Group and all of it’s layers are not visible. When False, the
Group’s layers are visible if they haven’t been hidden.

	
index(layer)

	Returns the index of the first copy of layer.
Raises ValueError if not found.

	
insert(index, layer)

	Insert a layer into the group.

	
pop(index=- 1)

	Remove the ith item and return it.

	
remove(layer)

	Remove the first copy of layer. Raises ValueError
if it is not present.

	
property scale

	Scales each pixel within the Group in both directions. For example, when
scale=2 each pixel will be represented by 2x2 pixels.

	
update_transform(parent_transform)

	Update the parent transform and child transforms

	
property x

	X position of the Group in the parent.

	
property y

	Y position of the Group in the parent.

	
resize(new_width, new_height)

	Resize the Switch to a new requested width and height.

	Parameters

	
	new_width (int [https://docs.python.org/3.4/library/functions.html#int]) – requested maximum width

	new_height (int [https://docs.python.org/3.4/library/functions.html#int]) – requested maximum height

	Returns

	None

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 displayio_switchround	

Index

 A
 | B
 | C
 | D
 | H
 | I
 | M
 | P
 | R
 | S
 | U
 | V
 | W
 | X
 | Y

A

 	
 	anchor_point (displayio_switchround.SwitchRound property)

 	
 	anchored_position (displayio_switchround.SwitchRound property)

 	append() (displayio_switchround.SwitchRound method)

B

 	
 	bounding_box (displayio_switchround.SwitchRound property)

C

 	
 	contains() (displayio_switchround.SwitchRound method)

D

 	
 	
 displayio_switchround

 	module

H

 	
 	height (displayio_switchround.SwitchRound property)

 	
 	hidden (displayio_switchround.SwitchRound property)

I

 	
 	index() (displayio_switchround.SwitchRound method)

 	
 	insert() (displayio_switchround.SwitchRound method)

M

 	
 	
 module

 	displayio_switchround

P

 	
 	pop() (displayio_switchround.SwitchRound method)

R

 	
 	remove() (displayio_switchround.SwitchRound method)

 	
 	resize() (displayio_switchround.SwitchRound method)

S

 	
 	scale (displayio_switchround.SwitchRound property)

 	
 	selected() (displayio_switchround.SwitchRound method)

 	SwitchRound (class in displayio_switchround)

U

 	
 	update_transform() (displayio_switchround.SwitchRound method)

V

 	
 	value (displayio_switchround.SwitchRound property)

W

 	
 	width (displayio_switchround.SwitchRound property)

X

 	
 	x (displayio_switchround.SwitchRound property)

Y

 	
 	y (displayio_switchround.SwitchRound property)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 Switch test with multiple switches

 		
 Overview of SwitchRound

 		
 Quickstart: Importing and using SwitchRound

 		
 Summary: SwitchRound Features and input variables

 		
 Description of features

 		
 Internal details: How the SwitchRound widget works

 		
 Group structure: Display elements that make up SwitchRound

 		
 Coordinate systems and use of anchor_point and anchored_position

 		
 The Widget construction sequence

 		
 Making it move

 		
 Orientation and a peculiarity of width and height definitions for SwitchRound

 		
 Setting the touch response boundary

 		
 Summary

 		
 A Final Word

 		
 displayio_switchround

 		
 Implementation Notes

 		
 Inheritance

_images/inheritance-256091fce677c2d5947ad6dc8ef45cde6467c70d.png
adafruit_displayio_layout widgets control.Control

displayio_switchroundswitchRound

displayio.group.Group || adafruit_displayio_layout.widgets.widget Widget

_images/inheritance-47e51df79b6a26a6ca56d1b105559e4a090baf6a.png
adafruit_displayio_layout widgets control.Control

displayio_switchroundswitchRound

displayio.group.Group || adafruit_displayio_layout.widgets.widget Widget

_static/plus.png

_static/file.png

_static/minus.png

